Unusual Abundances from Planetary System Material Polluting the White Dwarf G238-44

arxiv(2022)

引用 2|浏览8
暂无评分
摘要
Ultraviolet and optical spectra of the hydrogen-dominated atmosphere white dwarf star G238-44 obtained with FUSE, Keck/HIRES, HST/COS, and HST/STIS reveal ten elements heavier than helium: C, N, O, Mg, Al, Si, P, S, Ca, and Fe. G238-44 is only the third white dwarf with nitrogen detected in its atmosphere from polluting planetary system material. Keck/HIRES data taken on eleven nights over 24 years show no evidence for variation in the equivalent width of measured absorption lines, suggesting stable and continuous accretion from a circumstellar reservoir. From measured abundances and limits on other elements we find an anomalous abundance pattern and evidence for the presence of metallic iron. If the pollution is from a single parent body, then it would have no known counterpart within the solar system. If we allow for two distinct parent bodies, then we can reproduce the observed abundances with a mix of iron-rich Mercury-like material and an analog of an icy Kuiper Belt object with a respective mass ratio of 1.7:1. Such compositionally disparate objects would provide chemical evidence for both rocky and icy bodies in an exoplanetary system and would be indicative of a planetary system so strongly perturbed that G238-44 is able to capture both asteroid- and Kuiper Belt-analog bodies near-simultaneously within its $<$100 Myr cooling age.
更多
查看译文
关键词
planetary system material polluting,unusual abundances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要