Exploring risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: construction of a novel population-based predictive model

BMC ENDOCRINE DISORDERS(2022)

引用 2|浏览6
暂无评分
摘要
Background Machine learning was a highly effective tool in model construction. We aim to establish a machine learning-based predictive model for predicting the cervical lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC). Methods We obtained data on PTMC from the SEER database, including 10 demographic and clinicopathological characteristics. Univariate and multivariate logistic regression (LR) analyses were applied to screen the risk factors for cervical LNM in PTMC. Risk factors with P < 0.05 in multivariate LR analysis were used as modeling variables. Five different machine learning (ML) algorithms including extreme gradient boosting (XGBoost), random forest (RF), adaptive boosting (AdaBoost), gaussian naive bayes (GNB) and multi-layer perceptron (MLP) and traditional regression analysis were used to construct the prediction model. Finally, the area under the receiver operating characteristic (AUROC) curve was used to compare the model performance. Results Through univariate and multivariate LR analysis, we screened out 9 independent risk factors most closely associated with cervical LNM in PTMC, including age, sex, race, marital status, region, histology, tumor size, and extrathyroidal extension (ETE) and multifocality. We used these risk factors to build an ML prediction model, in which the AUROC value of the XGBoost algorithm was higher than the other 4 ML algorithms and was the best ML model. We optimized the XGBoost algorithm through 10-fold cross-validation, and its best performance on the training set (AUROC: 0.809, 95%CI 0.800–0.818) was better than traditional LR analysis (AUROC: 0.780, 95%CI 0.772–0.787). Conclusions ML algorithms have good predictive performance, especially the XGBoost algorithm. With the continuous development of artificial intelligence, ML algorithms have broad prospects in clinical prognosis prediction.
更多
查看译文
关键词
Papillary thyroid microcarcinoma cervical lymph node metastasis,Machine learning,Conventional regression model,Risk factors,Prediction model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要