The lifetime of the oxygen-evolving complex subunit PSBO depends on light intensity and carbon availability in Chlamydomonas.

Plant, cell & environment(2023)

引用 1|浏览7
暂无评分
摘要
PSBO is essential for the assembly of the oxygen-evolving complex in plants and green algae. Despite its importance, we lack essential information on its lifetime and how it depends on the environmental conditions. We have generated nitrate-inducible PSBO amiRNA lines in the green alga Chlamydomonas reinhardtii. Transgenic strains grew normally under non-inducing conditions, and their photosynthetic performance was comparable to the control strain. Upon induction of the PSBO amiRNA constructs, cell division halted. In acetate-containing medium, cellular PSBO protein levels decreased by 60% within 24 h in the dark, by 75% in moderate light, and in high light, the protein completely degraded. Consequently, the photosynthetic apparatus became strongly damaged, probably due to 'donor-side-induced photoinhibition', and cellular ultrastructure was also severely affected. However, in the absence of acetate during induction, PSBO was remarkably stable at all light intensities and less substantial changes occurred in photosynthesis. Our results demonstrate that the lifetime of PSBO strongly depends on the light intensity and carbon availability, and thus, on the metabolic status of the cells. We also confirm that PSBO is required for photosystem II stability in C. reinhardtii and demonstrate that its specific loss also entails substantial changes in cell morphology and cell cycle.
更多
查看译文
关键词
CO2 availability,inducible amiRNA,photoinhibition,photosystem II,protein lifetime
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要