High-Resolution Ultrasonography for the Analysis of Orthotopic ATC Tumors in a Genetically Engineered Mouse Model.

Journal of visualized experiments : JoVE(2022)

引用 0|浏览3
暂无评分
摘要
Anaplastic thyroid carcinoma (ATC) is associated with a poor prognosis and short median survival time, but no effective treatment improves the outcomes significantly. Genetically engineered murine models that mimic ATC's progression may help researchers to study treatments for this disease. Crossing three different genotypes of mice, a TPO-cre/ERT2; BrafCA/wt; Trp53Δex2-10/Δex2-10 transgenic ATC model was developed. The ATC murine model was induced by an intraperitoneal injection of tamoxifen with overexpression of BrafV600E and deletion of Trp53, and the tumors were generated within about 1 month. High-resolution ultrasound was applied to investigate the tumor initiation and progression, and the dynamic growth curve was obtained by measuring the tumor sizes. Compared to magnetic resonance imaging (MRI) and computed tomography scanning, ultrasound has advantages in observing the ATC murine model, such as being noninvasive, portable, in real-time, and without radiation exposure. High-resolution ultrasound is suitable for dynamic and multiple measurements. However, ultrasonographic examination of the thyroid in mice requires relevant anatomical knowledge and experience. This article provides a detailed procedure for utilizing high-resolution ultrasound to scan tumors in the transgenic ATC model. Meanwhile, ultrasonic parameter adjustment, ultrasound scanning skills, anesthesia and recovery of the animals, and other elements that need attention during the process are listed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要