Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ears

biorxiv(2022)

引用 1|浏览28
暂无评分
摘要
Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe previously unknown markers of 25 sensory and non-sensory cell types, with genes of hair cell and supporting cell subtypes displaying striking divergence between mice and humans. We further uncovered transcriptomes unique to hair cell precursors, which we validated to be 14-fold more robust in vestibular schwannoma utricles, representing ongoing regeneration in humans. Lastly, trajectory analysis of the supporting cell-hair cell axis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including mTOR signaling and synaptogenesis. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ears and tools to stimulate human inner ear regeneration. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要