An artificial LAMA2-GelMA hydrogel microenvironment for the development of pancreatic endocrine progenitors

Biomaterials(2022)

引用 2|浏览7
暂无评分
摘要
The biomimetic pancreatic microenvironment improves the differentiation efficiency and function of human embryonic stem cell-derived beta-cells (SC-beta cells). Thus, a laminin subunit alpha 2-gelatin methacrylate (LAMA2GelMA) hybrid hydrogel as a bionics carrier for the formation and maturation of endocrine lineage was developed in our research, based on pancreas proteomics analysis of postnatal mice. Pancreatic endocrine cells cultured on the hybrid hydrogel in vitro, which was composed of 0.5 mu g/mL LAMA2 protein and 4% GelMA, the expression of transcription factors (TFs), including NKX6.1, NKX6.2, and NEUROD1 were upregulated. Singlecell transcriptomics was performed after LAMA2 knockdown during the early differentiation of pancreatic progenitor (PP) cells, a marked decrease in the forkhead box protein A2 (FOXA2+)/GATA-binding factor 6 (GATA6+) cluster was detected. Also, we clarified that as a receptor of LAMA2, integrin subunit alpha 7 (ITGA7) participated in Integrin-AKT signaling transduction and influenced the protein levels of FOXA2 and PDX1. In vivo experiments showed that, PP cells encapsulated in the LAMA2-GelMA hydrogel exhibited higher serum C-peptide levels compared to the GelMA and Matrigel groups in nude mice and reversed hyperglycemia more quickly in STZ-induced diabetic nude mice. Taken together, our findings highlighted the feasibility of constructing a pancreas-specific microenvironment based on proteomics and tissue engineering for the treatment of diabetes.
更多
查看译文
关键词
LAMA2-GelMA,Pancreatic progenitor cells,SC-? cells,Differentiation,Microenvironment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要