An Investigation of Non-Linear Strength Characteristics of Solidified Saline Soils in Cold Regions

Materials(2022)

引用 0|浏览3
暂无评分
摘要
To date, the modelling of constitutive equations of solidified frozen saline soil have seldom been studied. This paper presented the formulation of a damage constitutive model for solidified saline frozen soil considering both freeze thaw cycles (FTCs) and salinities. To model the solidified frozen saline soil, the unconfined compression strength test (UCST) and consolidated undrained (CU) triaxial shear test were conducted under three ambient temperatures (20, –10, and –20 °C), five ages (3, 7, 14, 28, and 90 d), six salinities (0, 1, 2, 3, 4, and 5%), and four FTCs (0, 5, 10, and 14 times) in this research. The UCST results showed that the unconfined compressive strength (UCS) of the solidified saline soils at an age of 14 days can reach 75% of the maximum UCS, which basically meets the engineering construction requirements. The range of the rate of strength loss as affected by salinity was 16.2% to 75.65%, while the coupling effect of salt and frozen conditions amplified the rate of strength loss. Affected by increasing salinity, the rate of strength loss of frozen soils was magnified by a factor of 1.2 to 3.7 compared to thawing soils. Likewise, the CU triaxial shear test showed that the rate of strength loss of shear strength was amplified by the coupling effect of FTCs and salt erosion. With increased FTCs, the strain threshold of Young’s modulus was gradually pushed backward, which was similar to the effect of salinity. Remarkably, the damage constitutive model performed better than conventional constitutive models for the solidified saline soil under the salt–freezing coupling effect.
更多
查看译文
关键词
solidified saline soil,cold regions,freeze-thaw cycles,damage models,Weibull distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要