Martensitic transformation and shape memory effect of TiZrHf-based multicomponent alloys

Journal of Alloys and Compounds(2023)

引用 5|浏览10
暂无评分
摘要
Novel superelastic alloys and shape memory alloys composed of multi-principal elements with non-toxic and low magnetic susceptibility were developed. Phase constitution, crystallographic characteristics, mechanical properties, superelasticity and shape memory effect were investigated in Ti–Zr–Hf–Nb–Sn alloys. According to X-ray measurements, compositions exhibiting β phase, α’ phase and α” phase were determined. The lattice parameters of the phases were also determined. Lattice deformation strains were calculated based on the lattice parameters. The Ti–Zr–Hf–Nb–Sn alloys exhibited high tensile strength in a range of 600–1000 MPa. Superelasticity and shape memory effect due to β→α” martensitic transformation and the reverse transformation were observed in the Ti–Zr–Hf–Nb–Sn alloys. Superelastic recovery strain of 2.1% was observed in a (TiZrHf)–8.5Nb–3Sn alloy. The (TiZrHf)–8.5Nb–3Sn alloy exhibited low magnetic susceptibility comparing with alloys applied in medical fields. Potential of large superelastic recovery strain of the alloys was discussed based on the crystallographic and microstructural characteristics.
更多
查看译文
关键词
Martensitic transformation,Mechanical properties,Shape memory effect,Superelasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要