Evaluation of Preformed Monochloramine Reactivity with Processed Natural Organic Matter and Scaling Methodology Development for Concentrated Waters

Alison R. Kennicutt, Paul D. Rossman, Jacob D. Bollman, Taylor Aho,Gulizhaer Abulikemu,Jonathan G. Pressman,David G. Wahman

ACS ES&T Water(2022)

引用 0|浏览2
暂无评分
摘要
To evaluate natural organic matter (NOM) processing impacts on preformed monochloramine (PM) reactivity and as a first step in creating concentrated disinfection byproduct (DBP) mixtures from PM, a rational methodology was developed to proportionally scale PM NOM-related demand in unconcentrated source waters to waters with concentrated NOM. Multiple NOM preparations were evaluated, including a liquid concentrate and reconstituted lyophilized solid material. Published kinetic models were evaluated and used to develop a focused reaction scheme (FRS) that was relatively simple to implement and focused on monochloramine loss, including considerations for inorganic chloramine stability (i.e., autodecomposition) and bromide and iodide impacts. The FRS included critical reaction pathways and accurately simulated (without modification) monochloramine experimental data with and without bromide and iodide present over a range of PM-dosed NOM-free waters. For NOM-containing waters, addition of two NOM reactions in the FRS allowed (i) apportioning monochloramine loss to either inorganic or NOM-related reactions and (ii) selecting experiment conditions to provide an equivalent monochloramine NOM-related demand in unconcentrated and concentrated waters. The methodology provides a framework for future experimentation to evaluate DBP scaling and their speciation in concentrated water matrices when providing an equivalent NOM-related monochloramine demand in unconcentrated and concentrated matrices.
更多
查看译文
关键词
concentrates,natural organic matter,monochloramine,kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要