Trihelix Transcriptional Factor GhGT26 of Cotton Enhances Salinity Tolerance in Arabidopsis

PLANTS-BASEL(2022)

引用 8|浏览0
暂无评分
摘要
Cotton (Gossypium hirsutum L.), the most important textile crop worldwide, often encounters abiotic stress during its growing season and its productivity is significantly limited by adverse factors. Trihelix transcription factors (also known as GT factors) are important proteins involved in the morphological development and responses to abiotic stress in plants. However, their functions and molecular mechanisms in the cotton toward abiotic stress response remain unclear. In this study, a member (GhGT26) of the cotton Trihelix family was functionally characterized in the model plant Arabidopsis. This protein containing a SANT domain belongs to the GT-1 subgroup of trihelix proteins. GhGT26 was widely expressed in tissues (with the highest level in flower) and responded to high salt and ABA treatments at the transcriptional level. Using the Arabidopsis protoplast assay system, we found that the GhGT26 protein was located in the cell nuclei. The EMSA assay revealed that the GhGT26 protein could bind to the Site1-type GT cis elements (GT-3a) and MYB elements MRE3 and MRE4. The overexpression of GhGT26 improved plant tolerance to salt stress in transgenic Arabidopsis plants. Although ABA inhibits root elongation, the statistical analysis revealed that the root lengths of GhGT26-overexpressing Arabidopsis were the same as the wild plants after ABA treatment. Our results demonstrate that GhGT26 positively regulates salt stress via ABA-independent pathways. This evidence suggests that the GhGT26 may participate in the regulation of stress tolerance in cotton.
更多
查看译文
关键词
cotton, abiotic stress, trihelix transcription factor, tolerance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要