Synthesis of LiDAR-Detectable True Black Core/Shell Nanomaterial and Its Practical Use in LiDAR Applications.

Nanomaterials (Basel, Switzerland)(2022)

引用 2|浏览1
暂无评分
摘要
Light detection and ranging (LiDAR) sensors utilize a near-infrared (NIR) laser with a wavelength of 905 nm. However, LiDAR sensors have weakness in detecting black or dark-tone materials with light-absorbing properties. In this study, SiO2/black TiO2 core/shell nanoparticles (SBT CSNs) were designed as LiDAR-detectable black materials. The SBT CSNs, with sizes of 140, 170, and 200 nm, were fabricated by a series of Stöber, TTIP sol-gel, and modified NaBH4 reduction methods. These SBT CSNs are detectable by a LiDAR sensor and, owing to their core/shell structure with intrapores on the shell (ca. 2−6 nm), they can effectively function as both color and NIR-reflective materials. Moreover, the LiDAR-detectable SBT CSNs exhibited high NIR reflectance (28.2 R%) in a monolayer system and true blackness (L* < 20), along with ecofriendliness and hydrophilicity, making them highly suitable for use in autonomous vehicles.
更多
查看译文
关键词
LiDAR black,LiDAR-detectable,NIR-reflective,autonomous vehicle,blackness,core/shell,nanomaterial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要