An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents.

Bioengineering (Basel, Switzerland)(2022)

引用 3|浏览3
暂无评分
摘要
Chronic studies in the fasting and fed states of conscious subjects are fundamental for understanding the pathophysiological significance of functional gastrointestinal (GI) disorders and motility dysfunctions. To study the electrophysiology of the GI tract in the long term, the development of gastric implants is essential. This paper presents the development of an implantable system capable of monitoring the bioelectrical activity of the gastric system and modulating the activity in freely behaving rodents. The system consists of a miniature-sized implantable unit (IU), a stationary unit (SU) that communicates with the IU over a 2.4 GHz far-field radio frequency (RF) bidirectional link, and a charging unit (CU) that establishes an inductive 13.56 MHz near-field communication (NFC) with the IU, implementing an adaptive wireless power transfer (WPT). The CU can generate an adjustable power between +20 dBm and +30 dBm, and, in the presence of body movements and stomach motility, can deliver a constant rectified voltage to the IU. The live subject's exposure to the electromagnetic WPT in the developed system complies with the RF energy absorption restrictions for health and safety concerns. The system can be utilized to investigate the relationship between functional GI disorders and dysrhythmias in the gastric bioelectrical activity and study the potential of electroceutical therapies for motility dysfunctions in clinical settings.
更多
查看译文
关键词
adaptive wireless power transfer,bidirectional data communication,gastric bioelectrical activity,gastric recording and stimulation,near-field communication,specific absorption rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要