Vibrational properties of LiNbO3 and LiTaO3 under uniaxial stress

arxiv(2023)

引用 1|浏览7
暂无评分
摘要
Structural strain severely impacts material properties, such as the linear and nonlinear optical response. Moreover, strain plays a key role, e.g., in the physics of ferroelectrics and, in particular, of their domain walls. mu-Raman spectroscopy is a well-suited technique for the investigation of such strain effects as it allows to measure the lattice dynamics locally. However, quantifying and reconstructing strain fields from Raman maps requires knowledge on the strain dependence of phonon frequencies. In this paper, we have analyzed both theoretically and experimentally the phonon frequencies in the widely used ferroelectrics lithium niobate and lithium tantalate as a function of uniaxial strain via density functional theory and mu-Raman spectroscopy. Overall, we find a good agreement between our ab initio models and the experimental data performed with a stress cell. The majority of phonons show an increase in frequency under compressive strain, whereas the opposite is observed for tensile strains. Moreover, for E-type phonons, we observe the lifting of degeneracy already at moderate strain fields (i.e., at +/- 0.2%) along the x and y directions. This paper, hence, allows for the systematic analysis of three-dimensional strains in modern-type bulk and thin-film devices assembled from lithium niobate and tantalate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要