PTSD, major depression, and advanced transcriptomic age in brain tissue

DEPRESSION AND ANXIETY(2022)

引用 3|浏览6
暂无评分
摘要
Background Psychiatric disorders have been associated with advanced epigenetic age in DNA methylation, yet this relationship has not been studied in the brain transcriptome. We examined transcriptomic age using an RNA-based algorithm recently developed by Ren and Kuan ("RNAAgeCalc") and the associations between posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and alcohol use disorder with age-adjusted RNA age ("RNA age residuals") in three brain regions: dorsolateral prefrontal cortex, ventromedial prefrontal cortex (vmPFC), and motor cortex. Methods RNA sequencing was used to measure gene expression in postmortem brain tissue from the VA National PTSD Brain Bank (n = 94; 59% male). Results Linear models revealed that diagnoses of PTSD and/or MDD were positively associated with RNA age residuals in vmPFC only (p-adj = 0.012). Three genes in the RNAAgeCalc algorithm (KCNJ16, HYAL2, and CEBPB) were also differentially expressed in association with PTSD/MDD in vmPFC (p-adj = 6.45E-05 to 0.02). Enrichment analysis revealed that inflammatory and immune-related pathways were overrepresented (p-adj < 0.05) among the 43 genes in RNAAgeCalc that were also at least nominally associated with PTSD/MDD in vmPFC relative to the 448 RNAAgeCalc genes. Endothelial and mural cells were negatively associated with RNA age residuals in vmPFC (both p-adj = 0.028) and with PTSD/MDD (both p-adj = 0.017). Conclusions Results highlight the importance of inflammation and immune system dysregulation in the link between psychopathology and accelerated cellular aging and raise the possibility that blood-brain barrier degradation may play an important role in stress-related accelerated brain aging.
更多
查看译文
关键词
accelerated aging,inflammation,major depression,PTSD,RNA,transcriptomic age
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要