Li-rich and super Li-rich giants produced by element diffusion

arxiv(2022)

引用 1|浏览4
暂无评分
摘要
Context. About 0.2-2% of giant stars are Li-rich, whose lithium abundance (A(Li)) is higher than 1.5 dex. Among them, near 6% are super Li-rich with A(Li) exceeding 3.2 dex. Meanwhile, the formation mechanism of these Li-rich and super Li-rich giants is still under debate. Aims. Considering the compact He core of red giants, attention is paid to the effect of element diffusion on A(Li). In particular, when the He core flash occurs, the element diffusion makes the thermohaline mixing zone extend inward and connect to the inner convection region of stars. Then, a large amount of 7Be produced by the He flash can be transferred to stellar surface, finally turning into 7Li. Thus, the goal of this work is to propose the mechanism of A(Li) enrichment and achieve the consistency between the theoretical and observation data. Methods. Using the Modules for Experiments in Stellar Astrophysics (MESA), we simulate the evolution of low-mass stars, with considering the effects of element diffusion on the Li abundances. The timescale ratio of Li-rich giants to normal giants is estimated by population synthesis method. Then we get the theoretical value of A(Li) and make a comparison with observations. Results. Considering the influence of element diffusion in the model results in the increase of lithium abundance up to about 1.8dex, which can reveal Li-rich giants. Simultaneously, introducing high constant diffusive mixing coefficients (Dmix) with the values from 10e11 to 10e15in the model allows A(Li) to increase from 2.4 to 4.5dex, which can explain the most of Li-rich and super Li-rich giant stars. The population synthesis method reveals that the amount of Li-rich giants among giants is about 0.2-2%, which is consistent with observation estimated levels.
更多
查看译文
关键词
diffusion,li-rich,li-rich
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要