Sublinear-Time Algorithms for Max Cut, Max E2Lin(), and Unique Label Cover on Expanders.

SODA(2023)

引用 0|浏览27
暂无评分
摘要
We show sublinear-time algorithms for Max Cut and Max E2Lin$(q)$ on expanders in the adjacency list model that distinguishes instances with the optimal value more than $1-\varepsilon$ from those with the optimal value less than $1-\rho$ for $\rho \gg \varepsilon$. The time complexities for Max Cut and Max $2$Lin$(q)$ are $\widetilde{O}(\frac{1}{\phi^2\rho} \cdot m^{1/2+O(\varepsilon/(\phi^2\rho))})$ and $\widetilde{O}(\mathrm{poly}(\frac{q}{\phi\rho})\cdot {(mq)}^{1/2+O(q^6\varepsilon/\phi^2\rho^2)})$, respectively, where $m$ is the number of edges in the underlying graph and $\phi$ is its conductance. Then, we show a sublinear-time algorithm for Unique Label Cover on expanders with $\phi \gg \epsilon$ in the bounded-degree model. The time complexity of our algorithm is $\widetilde{O}_d(2^{q^{O(1)}\cdot\phi^{1/q}\cdot \varepsilon^{-1/2}}\cdot n^{1/2+q^{O(q)}\cdot \varepsilon^{4^{1.5-q}}\cdot \phi^{-2}})$, where $n$ is the number of variables. We complement these algorithmic results by showing that testing $3$-colorability requires $\Omega(n)$ queries even on expanders.
更多
查看译文
关键词
max cut,algorithms,expanders,unique label,sublinear-time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要