Electron charge qubit with 0.1 millisecond coherence time

arxiv(2023)

引用 0|浏览32
暂无评分
摘要
Electron charge qubits are compelling candidates for solid-state quantum computing because of their inherent simplicity in qubit design, fabrication, control and readout. However, electron charge qubits built on conventional semiconductors and superconductors suffer from severe charge noise that limits their coherence time to the order of one microsecond. Here we report electron charge qubits that exceed this limit, based on isolated single electrons trapped on an ultraclean solid neon surface in a vacuum. Quantum information is encoded in the motional states of an electron that is strongly coupled with microwave photons in an on-chip superconducting resonator. The measured relaxation and coherence times are both on the order of 0.1 ms, surpassing all existing charge qubits and rivalling state-of-the-art superconducting transmon qubits. The simultaneous strong coupling of two qubits with a common resonator is also demonstrated, as the first step towards two-qubit entangling gates for universal quantum computing.
更多
查看译文
关键词
electron
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要