Structure and Properties of Cubic PuH2 and PuH3: A Density Functional Theory Study

Crystals(2022)

引用 1|浏览6
暂无评分
摘要
The presence of cubic PuH2 and PuH3, the products of hydrogen corrosion of Pu, during long-term storage is of concern because of the materials’ pyrophoricity and ability to catalyse the oxidation reaction of Pu to form PuO2. Here, we modelled cubic PuH2 and PuH3 using Density Functional Theory (DFT) and assessed the performance of the PBEsol+U+SOC (0 ≤ U ≤ 7 eV) including van der Waals dispersion using the Grimme D3 method and the hybrid HSE06sol+SOC. We investigated the structural, magnetic and electronic properties of the cubic hydride phases. We considered spin–orbit coupling (SOC) and non-collinear magnetism to study ferromagnetic (FM), longitudinal and transverse antiferromagnetic (AFM) orders aligned in the <100>, <110> and <111> directions. The hybrid DFT confirmed that FM orders in the <110> and <111> directions were the most stable for cubic PuH2 and PuH3, respectively. For the standard DFT, the most stable magnetic order is dependent on the value of U used, with transitions in the magnetic order at higher U values (U > 5 eV) seen for both PuH2 and PuH3.
更多
查看译文
关键词
plutonium hydrides,structural properties,magnetic properties,electronic properties,hybrid density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要