Investigating Oxidative Addition Mechanisms of Allylic Electrophiles with Low-Valent Ni/Co Catalysts Using Electroanalytical and Data Science Techniques.

Journal of the American Chemical Society(2022)

引用 7|浏览15
暂无评分
摘要
The catalysis by a π-allyl-Co/Ni complex has drawn significant attention recently due to its distinct reactivity in reductive Co/Ni-catalyzed allylation reactions. Despite significant success in reaction development, the critical oxidative addition mechanism to form the π-allyl-Co/Ni complex remains unclear. Herein, we present a study to investigate this process with four catalysis-relevant complexes: Co(BPy)Br, Co(Phen)Br, Ni(BPy)Br, and Ni(Phen)Br. Enabled by an electroanalytical platform, Co(I)/Ni(I) species were found responsible for the oxidative addition of allyl acetate. Kinetic features of different substrates were characterized through linear free-energy relationship (Hammett-type) studies, statistical modeling, and a DFT computational study. In this process, a coordination-ionization-type transition state was proposed, sharing a similar feature with Pd(0)-mediated oxidative addition in Tsuji-Trost reactions. Computational and ligand structural analysis studies support this mechanism, which should provide key information for next-generation catalyst development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要