Structural elements facilitate extreme long-range gene regulation at a human disease locus

biorxiv(2022)

引用 1|浏览12
暂无评分
摘要
Enhancer clusters overlapping disease-associated mutations in Pierre Robin sequence (PRS) patients regulate SOX9 expression at genomic distances over 1.25 megabases. We applied optical reconstruction of chromatin architecture (ORCA) imaging to trace 3D locus topology during PRS-enhancer activation. While we observed pronounced changes in locus topology between cell-types, analysis of single chromatin fiber traces revealed that these ensemble-average differences arise not from the presence of cell-type unique conformations, but through changes in frequency of commonly sampled topologies. We further identified two CTCF-bound elements, internal to the SOX9 topologically associating domain, which are positioned near its 3D geometric center and bridge enhancer-promoter contacts in a series of chromatin loops. Ablation of these elements results in diminished SOX9 expression and altered domain-wide contacts. Polymer models with uniform loading across the domain and frequent cohesin collisions recapitulate this multiloop, centrally clustered geometry, suggesting a mechanism for gene regulation over ultra-long ranges. ### Competing Interest Statement J.W is a paid member of Camp4 and Paratus Biosciences scientific advisory boards.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要