Effect of stacking type and magnetic moment in spin-valley polarized MoS2-MoSe2 heterobilayers

AIP Advances(2022)

引用 0|浏览1
暂无评分
摘要
In this work, we focused on engineering the bandgap of the MoS2-MoSe2 heterobilayer via either stacking type or induced magnetic moment with the aid of density functional theory. We have computed the electronic properties of different stacking MoS2-MoSe2 heterobilayers and their magnetization components, in which all situations retain spin-valley locking. Calculations show that different stacking types can cause a bandgap change of a maximum of 0.1 eV. On the other hand, a micro-enhanced magnetic moment in the heterobilayer increases the bandgap (in some cases, there are changes close to 0.3 eV) significantly. Results suggest that the stacking type and induced magnetic moment make MoS2-MoSe2 heterobilayers potential candidates for valleytronics applications. This study provides a new pathway in tuning spin-valley polarization of valleytronics devices.
更多
查看译文
关键词
magnetic moment,spin-valley
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要