Interfacial engineering of tungstic disulfide-carbide heterojunction for high-current-density hydrogen evolution

RSC ADVANCES(2022)

引用 1|浏览4
暂无评分
摘要
Developing low-cost and high-efficiency electrocatalysts to electrolyze water is an effective method for large-scale hydrogen production. For large-scale commercial applications, it is crucial to call for more efficient electrocatalysts with high-current density (>= 1000 mA cm(-2)). However, it is challenging to simultaneously promote the large-scale production and hydrogen evolution reaction (HER) activity of these hydrogen catalysts. Herein, we report the large area tungstic disulfide-carbide (W/WS2-WC) heterojunction electrode vertically grown on an industrial-grade tungsten substrate by the solid-state synthesis method. The W/WS2-WC heterojunction electrode achieves a low overpotential of 473 mV at 1000 mA cm(-2) in alkaline electrolytes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要