Significance of variable thermal conductivity and nonuniform heating Source for Burgers nanofluid flow subject to modified thermal laws

INTERNATIONAL JOURNAL OF MODERN PHYSICS B(2023)

引用 2|浏览0
暂无评分
摘要
The thermal conductivity attributes a major role to the thermal transportation and engineering processes where the fluid is used as an energy source. It has been commonly noted that much attention of research towards the heat and fluid flow is intended by keeping the fluctuation of thermal conductivity as a constant. However, experimental results shows that most of the times, thermal conductivity changes in variation of temperature, pressure or different configurations. The prime attention of current research is to explore the role of variable thermal conductivity for thermal transport of Burgers nanofluid due to inclined surface. The Buongiorno nanofluid model is used to illustrate the Brownian motion and thermophoresis properties. The heat transfer phenomenon is analyzed by incorporating the modified Cattaneo-Christov (CC) theories. Moreover, to maintain the improved heat transfer rate, the novel nonuniform heat source applications are also utilized. After altering the governing problem into dimensionless system, homotopy analysis scheme is used with excellent accuracy. The physical pattern of velocity, heat transfer rate and concentration phenomenon are observed in view of involved parameters. It is noted that the presence of variable thermal conductivity enhanced the thermal process more effectively as compared to constant thermal conductivity assumptions. Both heat and mass transfer phenomenon enhances for Deborah number. The declining concentration change is observed with variation of concentration relaxation number.
更多
查看译文
关键词
Burger nanofluid, variable thermal conductivity, nonuniform heat source, inclined surface, analytical approach
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要