In vitro and in vivo evaluation of dual Clofazimine and Verapamil loaded PLGA nanoparticles

INDIAN JOURNAL OF CLINICAL BIOCHEMISTRY(2022)

引用 0|浏览1
暂无评分
摘要
Combination therapy may counter the risk caused by efflux pumps mediated resistance developed by mycobacteria with a concomitant increase of the bactericidal effect of anti-TB drugs. In the present study, combination of two drugs in a nanoformulation was prepared. Clofazimine targets type 2 NADH dehydrogenase of the electron transport chain, and Verapamil inhibits various mycobacterial efflux pumps. The nanotechnology approach was adopted to overcome limitations associated with administration of free form of drugs by using poly (D, L-lactic-co-glycolic acid) as a polymer. Nanoparticles were prepared by oil/water single emulsion solvent evaporation procedure and characterized by various techniques. The results thus highlighted that developed nanoparticles were spherical with nano range size (200-450 nm). Fourier transform infrared spectroscopy revealed successful encapsulation of drugs in developed nanoformulations. Drugs in combination showed higher encapsulation efficiency and percentage drug loading capacity as compared to individual drug nanoformulations. Also, reduced toxicity of nanoformulation was observed in hemolysis assay as compared to free drugs. Ex-vivo analysis demonstrated efficient uptake of rhodamine encapsulated nanoparticles by THP-1 cells, while in-vivo results revealed sustained drug release of nanoformulation as compared to free drugs in combination. Therefore, we were able to achieve development of a single nanoformulation encapsulating Clofazimine and Verapamil in combination. Based on these findings, future studies can be designed to explore the potential of co-encapsulated Clofazimine and Verapamil nanoparticles in management of tuberculosis.
更多
查看译文
关键词
Clofazimine, Verapamil, PLGA, Nanoparticles, Tuberculosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要