Monitoring and Research on Submarine Hydrate Mound: Review and Future Perspective

MARINE TECHNOLOGY SOCIETY JOURNAL(2022)

引用 1|浏览4
暂无评分
摘要
Submarine hydrate mounds are important indicators of submarine methane seepages, hydrocarbon reservoirs, and seabed instability. In order to fully understand the formation of hydrate mounds, here, we review the study of hydrate mounds, in which the morphology, the formation mechanism, as well as the research techniques are introduced. The formation mechanism of hydrate mounds can be classified into: (1) The sediment volume expands due to the formation and accumulation of shallow hydrates; (2) unconsolidated shallow sediment layers respond mechanically to increasing pore pressure caused by shallow gas accumulation; (3) materials extrude from submarine layers driven by the over-pressure caused by shallow gas accumulation; and (4) the interaction of multiple factors. Most hydrate mounds occur in submarine gas hydrate occurrence areas. Active hydrate mounds are circular or ellipse well-rounded shaped, with gas seepages and abundant organisms, whereas inactive hydrate mounds are rough or uneven irregular shaped, with low flux of fluid in the migration channel. Due to the limitation of long-term in-situ observation technology, the existing observation method makes it possible to provide basic morphology features, stratigraphic structures, and fluid migration channels of the hydrate mound. Future research should be focused on the long-term in-situ monitoring technology, the formation mechanism of the hydrate mounds, and the role of gas hydrates in the seafloor evolution. In addition, the features of hydrate mounds (e.g., gas chimneys and fluid migration conduits) and the relationship between hydrate mounds and pockmarks could be further studied to clarify the influence of methane release from hydrate mounds on biogeochemical processes and the atmospheric carbon contents.
更多
查看译文
关键词
gas hydrate, submarine hydrate mound, formation mechanism, in-situ monitoring, MEMS sensor network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要