Experimental Investigation on the Impact of Dam-Break Induced Surges on a Vertical Wall

FLUIDS(2022)

引用 3|浏览3
暂无评分
摘要
This paper presents the results of an experimental investigation on the impact of dambreak-induced surges on a vertical wall. The instantaneous surge height and dynamic pressure on a vertical wall were measured for surges with different reservoir depths of H = 200 mm, 250 mm, and 300 mm. The time-histories of horizontal pressure on the wall were measured using the miniaturized pressure transducers, and the surge heights were recorded with an ultrasonic sensor. The relationships between dynamic pressure and surge height on the vertical wall and during the impact were obtained from recorded raw data. The experimental results highlighted detailed processes on the variation of impact pressure during the surge propagation, impact on the wall, runup, falling, and breakup of the turbulent flow. The time-histories of surge height and dynamic pressure were analyzed, and the results were compared with the hydrostatic pressure on the wall to study wave breaking mechanism of tsunami waves on the wall. Dynamic pressures at the impact instant were found to be approximately three times the corresponding static pressure in the bed, in good agreement with previous research Moreover, the maximum surge runup heights on the wall were between 2.1 and 2.3 times the corresponding initial reservoir depths. The vertical distributions of impact pressure were divided into two hydrodynamic regimes. Based on the impact duration, the first regime occurred less than 0.1 s after the impact with highly non-linear pressure distributions, and the second regime showed a semi-hydrostatic pressure distribution from 0.5 s to 0.7 s. The results presented in this study are suitable for the design of coastal infrastructures and can be used to validate numerical models.
更多
查看译文
关键词
dam-break wave, tsunami-like wave, turbulent surge, dynamic pressure, free surface, surge height, runup
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要