PEI-coated Prussian blue nanocubes as pH-Switchable nanozyme: Broad-pH-responsive immunoassay for illegal additive

BIOSENSORS & BIOELECTRONICS(2023)

引用 13|浏览7
暂无评分
摘要
Nanozymes are commonly used in the construction of immunosensors, yet they are generally susceptible to pH condition, which greatly hindered their practical use. To break the limitation of pH conditions, polyethyleneimine-coated Prussian blue nanocubes (PBNCs@PEI) were synthesized as the pH-switchable nanozyme, which can show peroxidase-like and catalase-like activity in acidic and alkaline condition, respec-tively. Besides, the modification of PEI can largely improve the catalytic activity of PBNCs. Herein, the pH-switchable catalytic property of PBNCs@PEI was used to construct the dual-mode immunosensor for the detection of illegal additive, rosiglitazone. In acidic condition, PBNCs@PEI showed excellent peroxidase-like activity, which can trigger the colorimetric reaction of Au nanostars with TMB2+/CTAB. In alkaline condition, the catalase-like activity of PBNCs@PEI prevailed, thus the decomposition of H2O2 can generate O2 to initiate the aerobic oxidation of 4-chloro-1-naphthol (4-CN), which can decrease the fluorescence intensity of 4-CN. Based on the competitive immunoassay, both the localized surface plasmon resonance wavelength shift of Au nanostars and the fluorescence intensity change of 4-CN were quantitatively related with rosiglitazone concentration, thus shedding a new light on the construction of broad-pH-responsive immunosensor. Besides, a smart device was developed to transfer the chroma value of Au nanostars into the RSG concentration, making this sensor a promising method in on-site and point-of-care detection.
更多
查看译文
关键词
Prussian blue,Nanozyme,Immunosensor,Rosiglitazone,Illegal additive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要