The intracellular Ca2+ channel TRPML3 is a PI3P effector that regulates autophagosome biogenesis

Proceedings of the National Academy of Sciences of the United States of America(2022)

引用 2|浏览1
暂无评分
摘要
Autophagy is a multiple fusion event, initiating with autophagosome formation and culminating with fusion with endo-lysosomes in a Ca2+-dependent manner. The source of Ca2+ and the molecular mechanism by which Ca2+ is provided for this process are not known. The intracellular Ca2+ permeable channel transient receptor potential mucolipin 3 (TRPML3) localizes in the autophagosome and interacts with the mam-malian autophagy-related protein 8 (ATG8) homolog GATE16. Here, we show that lipid-regulated TRPML3 is the Ca2+ release channel in the phagophore that provides the Ca2+ necessary for autophagy progress. We generated a TRPML3-GCaMP6 fusion protein as a targeted reporter of TRPML3 compartment localization and channel function. Notably, TRPML3-GCaMP6 localized in the phagophores, the level of which increased in response to nutrient starvation. Importantly, phosphatidylinositol-3-phosphate (PI3P), an essential lipid for autophagosome formation, is a selective regulator of TRPML3. TRPML3 interacted with PI3P, which is a direct activator of TRPML3 current and Ca2+ release from the phagophore, to promote and increase autophagy. Inhibition of TRPML3 suppressed autophagy even in the presence of excess PI3P, while activation of TRPML3 reversed the autophagy inhibition caused by blocking PI3P. Moreover, disruption of the TRPML3-PI3P interaction abolished both TRPML3 activation by PI3P and the increase in autophagy. Taken together, these results reveal that TRPML3 is a downstream effector of PI3P and a key regulator of autophagy. Activation of TRPML3 by PI3P is the critical step providing Ca2+ from the phagophore for the fusion process, which is essential for autophagosome biogenesis.
更多
查看译文
关键词
Ca2+ channel,GCaMP6,PI3P,TRPML3,autophagy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要