Construction of CuO/Cu-nanoflowers loaded on chitosan-derived porous carbon for high energy density supercapacitors

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2023)

引用 16|浏览6
暂无评分
摘要
Copper oxide (CuO) and copper (Cu) have been viewed as the prospective pseudocapacitive electrode materials for supercapacitors. Nevertheless, the poor electron transfer capacity, loading amount, and cycling stability limit their wide applications, which can be addressed by developing the CuO based heterojunction on conductive carbons. Here, a CuO/Cu@C comprising CuO/Cu nanoflowers and chitosan-derived N-doped porous carbon was compounded by simple mechanical mixing, freeze-drying, and carbonization. The composite heated at 700 degrees C exhibited a high specific capacitance of 2479F/g at 0.5 A/g and excellent cycling stability with capacitance retention of 82.43 % after 10 000 charge-discharge cycles. In addition, the asymmetric supercapacitor (ASC), i.e., CuO/Cu@C-700//AC assembled by CuO/Cu@C (as a positive electrode) and activated carbon (AC, as a negative electrode) dis-played a great energy density of 76.87 W h kg-1 at 374.5 W kg-1 and kept as high as 25.83 W h kg-1 even at 14998 W kg-1. Our work provides a new pathway to preparing transition metal oxide-based electrode materials with distinguished electrochemical performances.(c) 2022 Published by Elsevier Inc.
更多
查看译文
关键词
CuO,Cu@C,N-doped porous carbon,Chitosan,Supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要