Plasmonic enhanced piezoelectric photoresponse with flexible PVDF@Ag-ZnO/Au composite nanofiber membranes

OPTICS EXPRESS(2022)

引用 3|浏览4
暂无评分
摘要
The coordination of piezoelectric and plasmonic effects to regulate the separation and migration of photo-generated carriers is still a significant method to improve the performance of visible-light photoresponse. Herein, we propose the PVDF@Ag-ZnO/Au composite nanofiber membranes utilizing the piezoelectric and plasmonic effects to promote the photocatalytic degradation of organic dyes. Here, ZnO nanorods can generate a built-in electric field under vibration to separate electron-hole pairs. The Schottky junction formed by noble metal/semiconductor can not only inhibit the recombination of photo-generated carriers and accelerate the migration of carriers, but also enhance the utilization of visible light. In addition, the structure has excellent flexibility and easy recycling characteristics. We demonstrate that the plasmonic effect of noble metal can enhance the light response of membranes and broaden light absorption from ultraviolet to visible light region. With the help of the surface-enhanced Raman scattering (SERS), modulation effects of the piezoelectric effect on light response is proved. For catalytic processes, rhodamine B (98.8%) can be almost completely degraded using PVDF@Ag-ZnO/Au within 120 minutes in the piezoelectric photocatalysis process, which is 2.2 and 2.8 times higher than photocatalysis and piezoelectric catalysis, respectively. This work provides a promising strategy for harnessing solar and mechanical energy. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要