Digital holographic interferometry for particle detector diagnostic

A. Arena, G. Cantatore,M. Karuza

2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)(2022)

引用 0|浏览4
暂无评分
摘要
In high precision scattering experiments particle tracks must often be reconstructed from a series of hits in successive detector planes. The relative distance between these planes is a critical parameter that must be monitored during operation. To address this problem we have developed a digital holographic interferometer dubbed Holographic Alignment Monitor (HAM) to be used in the MUonE project at CERN. MUonE aims at a precision measurement of the scattering angle between particles after an elastic muon-electron scattering. The HAM is designed to monitor the relative distance between position-sensitive sensor planes inside a MUonE tracking station with a resolution better than the required 10 µm. The system uses a 532 nm fiber-coupled laser source both to illuminate a portion of the detector plane (object), and to provide the reference beam. A CMOS image sensor acquires the raw data, and the reconstructed holographic image of the silicon sensor being observed is computed using an algorithm containing a Fourier transform. The relative distance between silicon planes is monitored by superposing successive raw images of the same object on an initial reference one and observing the interference fringes appearing on the reconstructed holographic image. Preliminary tests have yielded a distance resolution of less than 1 µm.
更多
查看译文
关键词
digital holography,interferometry,detector diagnostic,particle tracking,calibration,muon scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要