Processing and utilization of an eco-friendly oil as heat transfer fluid derived from camelina seeds

Biomass Conversion and Biorefinery(2022)

引用 2|浏览5
暂无评分
摘要
Bio-oil from nonedible sources is an ideal alternative for thermal oil in solar and heat applications. The significant merits of bio-oil in high-temperature applications are less volatile, higher availability, non-hazardous, environmentally friendly, and renewable resources. Heat transmission fluids (HF) are a medium that transfers heat in all solar heating applications. Generally, mineral oils derived from crude oil act as HF, harming humans and the environment during their disposal. This negative effect shall be lowered by replacing conventional fluids with bio-oil developed from vegetable or synthetic oil. Of late, fats obtained from waste and inedible sources are promising in solar applications as they eliminate associated issues. This study uses eco-friendly bio-oil as a heat transfer fluid obtained from camelina oil. Camelina oil is of inedible vegetable source and is produced by cold pressing from the Camelina sativa seeds. Heat transfer fluid is produced by subjecting raw camelina oil to a base catalyst reaction. No work till date has investigated the camelina oil as an eco-friendly heat transfer fluid. Various parameters for obtaining a higher yield of fluid with lower reagents waste are analyzed in this study. After conversion, the camelina oil was reviewed for its suitability as a heat transfer fluid. Variations in critical properties such as density, thermal conductivity, specific heat capacity, and dynamic viscosity with temperature are analyzed. Results revealed that the properties of bio-oil provided are comparable with conventional fluids. Based on the results, the maximum reaction efficiency of about 93% was achieved at 600 rpm of agitation speed, 1% wt of NaOH concentration, 5.5:1 molar proportion, and 65 °C of reaction temperature. The critical properties of camelina bio-oil improved with temperature and depend on the composition of fatty acids. Hence, CME acts as an improved heat transfer fluid and shall be a probable applicant to replace the synthetic fluid in heating applications.
更多
查看译文
关键词
Environment,Renewable energy,Lean energy technology,Sustainable,Air pollution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要