Ventral Subiculum Inputs to Nucleus Accumbens Medial Shell Preferentially Innervate D2R Medium Spiny Neurons and Contain Calcium Permeable AMPARs.

The Journal of neuroscience : the official journal of the Society for Neuroscience(2023)

引用 1|浏览0
暂无评分
摘要
Ventral subiculum (vSUB) is the major output region of ventral hippocampus (vHIPP) and sends major projections to nucleus accumbens medial shell (NAcMS). Hyperactivity of the vSUB-NAcMS circuit is associated with substance use disorders and the modulation of vSUB activity alters drug seeking and drug reinstatement behavior in rodents. However, to the best of our knowledge, the cell type-specific connectivity and synaptic transmission properties of the vSUB-NAcMS circuit have never been directly examined. Instead, previous functional studies have focused on total ventral hippocampal (vHIPP) output to NAcMS without distinguishing vSUB from other subregions of vHIPP, including ventral CA1 (vCA1). Using electrophysiology, we systematically characterized the vSUB-NAcMS circuit with cell type- and synapse-specific resolution in male and female mice and found that vSUB output to dopamine receptor type-1 (D1R) and type-2 (D2R) expressing medium spiny neurons (MSNs) displays a functional connectivity bias for D2R MSNs. Furthermore, we found that vSUB-D1R and vSUB-D2R MSN synapses contain calcium-permeable AMPA receptors in drug-naive mice. Finally, we find that, distinct from other glutamatergic inputs, cocaine exposure selectively induces plasticity at vSUB-D2R synapses. Importantly, we directly compared vSUB and vCA1 output to NAcMS and found that vSUB synapses are functionally distinct and that vCA1 output recapitulated the synaptic properties previously ascribed to vHIPP. Our work highlights the need to consider the contributions of individual subregions of vHIPP to substance use disorders and represents an important first step toward understanding how the vSUB-NAcMS circuit contributes to the etiologies that underlie substance use disorders. Inputs to nucleus accumbens (NAc) dopamine receptor type 1 (D1R) and D2R medium spiny neurons (MSNs) are critically involved in reward seeking behavior. Ventral subiculum (vSUB) provides robust synaptic input to nucleus accumbens medial shell (NAcMS) and activity of this circuit is linked to substance use disorders. Despite the importance of the vSUB to nucleus accumbens circuit, the functional connectivity and synaptic transmission properties have not been tested. Here, we systematically interrogated these properties and found that basal connectivity and drug-induced plasticity are biased for D2R medium spiny neurons. Overall, we demonstrate that this circuit is distinct from synaptic inputs from other brain regions, which helps to explain how vSUB dysfunction contributes to the etiologies that underlie substance use disorders.
更多
查看译文
关键词
MSNs,calcium-permeable,cocaine,connectivity,nucleus accumbens,ventral subiculum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要