Scaling Protein-Water Interactions in the Martini 3 Coarse-Grained Force Field to Simulate Transmembrane Helix Dimers in Different Lipid Environments.

Journal of chemical theory and computation(2023)

引用 5|浏览10
暂无评分
摘要
Martini 3, the latest version of the widely used Martini force field for coarse-grained molecular dynamics simulations, is a promising tool to investigate proteins in phospholipid bilayers. However, simulating other lipid environments, such as detergent micelles, presents challenges due to the absence of validated parameters for their constituent molecules. Here, we propose parameters for the micelle-forming surfactant, dodecylphosphocholine (DPC). These result in micelle assembly with aggregation numbers in agreement with the experimental values. However, we identified a lack of hydrophobic interactions between transmembrane helix protein dimers and the tails of DPC molecules, preventing insertion and stabilization of the protein in the micelles. This problem was also observed for protein insertion by self-assembling 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC) or dipalmitoylphosphatidylcholine (DPPC) bilayers. We propose the reduction of the nonbonded interactions between protein and water beads by 10% as a simple and effective solution to this problem that enables protein encapsulation in phospholipid micelles and bilayers without altering protein dimerization or the bilayer structure.
更多
查看译文
关键词
transmembrane helix dimers,different lipid environments,protein-water,coarse-grained
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要