A Mesp1-dependent developmental breakpoint in transcriptional and epigenomic specification of early cardiac precursors

biorxiv(2022)

引用 0|浏览11
暂无评分
摘要
Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood due in part to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1 , a transiently-expressed mesodermal transcription factor (TF), is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mis-localized, prompting us to investigate the scope of Mesp1 ’s role in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and critical cardiac TFs, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single cell chromatin accessibility analysis defined a Mesp1 -dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1 -independent aspects of early CPC specification and underscore a Mesp1- dependent regulatory landscape required for progression through cardiogenesis. ### Competing Interest Statement B.G.B. and D.S. are founders, shareholders, and advisors of Tenaya Therapeutics. B.G.B. is an advisor for SilverCreek Pharmaceuticals. The work presented here is not related to the interests of these commercial entities.
更多
查看译文
关键词
cardiac development,cardiac specification,gastrulation,gene regulation,mouse embryo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要