Exosomal thioredoxin-1 from hypoxic human umbilical cord mesenchymal stem cells inhibits ferroptosis in doxorubicin-induced cardiotoxicity via mTORC1 signaling

Free Radical Biology and Medicine(2022)

引用 11|浏览1
暂无评分
摘要
Doxorubicin (DOX), a clinical chemotherapeutic drug, is often annoyed by its cardiotoxicity which involves ferroptosis in its pathological progress. Human umbilical cord mesenchymal stem cells (HucMSCs)-derived exosomes (HucMSCs-Exo) are proven effective in treating cardiovascular diseases. This study aimed to compare the therapeutic effects between normoxic HucMSCs-Exo (Exo) and hypoxic HucMSCs-Exo (Hypo-Exo) on DOX-induced ferroptosis and explore the underlying mechanisms. An acute cardiotoxicity model was successfully constructed by administrating two doses intraperitoneal injections of DOX (25 mg/kg in total). Exo and Hypo-Exo were extracted by ultracentrifugation and characterized. Compared with Exo, Hypo-Exo and Ferrostatin-1 (Fer-1) exerted superior effects on inhibiting DOX-induced ferroptosis, as evidenced by decreasing malondialdehyde (MDA), iron content and increasing glutathione (GSH) level as well as ferroptosis-related genes expression including prostaglandin-endoperoxide synthase 2 (Ptgs2) mRNA level and glutathione peroxidase 4 (GPX4) protein level. Based on quantitative proteomics analysis, we found that thioredoxin1 (Trx1) was remarkably upregulated in Hypo-Exo and exhibited anti-ferroptosis activity via activating the mechanistic target of rapamycin complex 1 (mTORC1) in neonatal rat cardiomyocytes (NRCMs). Trx1 knockdown and rapamycin (an mTORC1 inhibitor) partially abolished the protective effects of Hypo-Exo. Furthermore, our data indicated that solute carrier family 7 member 11 (SLC7A11) was critical for GPX4 protein synthesis. In conclusion, Hypo-Exo exhibited a better suppression of ferroptosis in DOX-induced cardiotoxicity. Trx1-mediated mTORC1 activation is critical for the Hypo-Exo anti-ferroptosis process, which involves increased GPX4 protein synthesis and decreased iron overload. This study indicated that Hypo-Exo may present a potential strategy against ferroptosis in DOX-induced cardiotoxicity.
更多
查看译文
关键词
Doxorubicin,Ferroptosis,Mesenchymal stem cells,Exosomes,Thioredoxin1 (Trx1),Mechanistic target of rapamycin complex 1 (mTORC1),Glutathione peroxidase 4 (GPX4)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要