The intrarenal blood pressure modulation system is differentially altered after renal denervation guided by different intensities of blood pressure responses

Hypertension research : official journal of the Japanese Society of Hypertension(2022)

引用 13|浏览8
暂无评分
摘要
The aim of this study was to investigate alterations in the intrarenal blood pressure (BP) regulation system after renal denervation (RDN) guided by renal nerve stimulation (RNS). Twenty-one dogs were randomized to receive RDN at strong (SRA group, n = 7) or weak (WRA group, n = 7) BP-elevation response sites identified by RNS or underwent RNS only (RNS-control, RSC, n = 7). After 4 weeks of follow-up, renal sympathetic components, the main components of renin-angiotensin system (RAS) and the major transporters involved in sodium and water reabsorption were assessed by immunohistochemical analysis. Compared with RSC treatment, RDN therapy significantly reduced renal norepinephrine and tyrosine hydroxylase levels, decreased the renin content and inhibited the onsite generation of angiotensinogen. Moreover, the expression of exciting axis components, including angiotensin-converting enzyme (ACE), angiotensin II and angiotensin II type-1 receptor, was downregulated, while protective axis components for the cardiovascular system, including ACE2 and Mas receptors, were upregulated in both WRA and SRA groups. Moreover, RDN reduced the abundance of aquaporin-1 and aquaporin-2 in kidneys. Although RDN had a minimal effect on overall NKCC2 expression, its activation (p-NKCC2) and directional enrichment in the apical membrane (mNKCC2) were dramatically blunted. All these changes were more obvious in the SRA group than WRA group. Selective RDN guided by RNS effectively reduced systemic BP by affecting the renal neurohormone system, as well as the sodium and water transporter system, and these effects at sites with a strong BP response were more superior.
更多
查看译文
关键词
Blood pressure response,Renal denervation,Sympathetic nerve,Renin-angiotensin system,Renal nerve stimulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要