Enhancing force controllability by mechanics in exoskeleton design

Mechatronics(2022)

引用 3|浏览1
暂无评分
摘要
This paper presents an exoskeleton concept based on low-size and low-cost electromagnetic motors which allows to improve force controllability and reduce costs at the same time. The idea comes from the theoretical analysis of a simple interaction control model which suggests that lowering the motor inertia leads to improved performance robustness. In particular, we show that a lower motor inertia reduces the sensitivity to the wearer impedance which is usually characterized by high uncertainties. In order to reduce the motor size, this paper proposes to lower the motor torque requirements and considers a parallelogram-based architecture with mechanical gravity compensation. A two degree of freedom prototype is realized to implement the concept and to experimentally validate our hypotheses, showing coherence with theoretical expectations and paving the way for a new generation of affordable forced-controlled exoskeletons.
更多
查看译文
关键词
0000,1111
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要