Acetyl Co-A Carboxylase Inhibition Halts Hyperglycemia Induced Upregulation of De Novo Lipogenesis in Podocytes and Proximal Tubular Cells

METABOLITES(2022)

引用 1|浏览2
暂无评分
摘要
The effect of glycemic stress on de novo lipogenesis (DNL) in podocytes and tubular epithelial cells is understudied. This study is aimed (A) to show the effect of glycemic stress on DNL, and (B) to assess the effect of acetyl-Co A (ACC) inhibition on halting upregulation of DNL, on the expression of other lipid regulatory genes in the DNL pathway, and on markers of fibrosis and apoptosis in podocytes and tubular epithelial cells. We used cultured mouse primary tubular epithelial cells, mouse proximal tubular (BUMPT) cells, and immortal mouse podocytes and measured their percentage of labeled C-13(2)-palmitate as a marker of DNL after incubation with C-13(2) acetate in response to high glucose concentration (25 mM). We then tested the effect of ACC inhibition by complimentary strategies utilizing CRISPR/cas9 deletion or incubation with Acaca and Acacb GapmeRs or using a small molecule inhibitor on DNL under hyperglycemic concentration. Exposure to high glucose concentration (25 mM) compared to osmotic controlled low glucose concentration (5.5 mM) significantly increased labeled palmitate after 24 h up to 72 h in podocytes and primary tubular cells. Knocking out of the ACC coding Acaca and Acacb genes by CRISPR/cas9, downregulation of Acaca and Acacb by specific antisense LNA GapmeRs and inhibition of ACC by firsocostat similarly halted/mitigated upregulation of DNL and decreased markers of fibrosis and programmed cell death in podocytes and various tubular cells. ACC inhibition is a potential therapeutic target to mitigate or halt hyperglycemia-induced upregulation of DNL in podocytes and tubular cells.
更多
查看译文
关键词
diabetes,de novo lipogenesis,acetyl Co-A carboxylase,palmitate,podocytes,tubules,lipid metabolism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要