Leveraging the CSF proteome toward minimally-invasive diagnostics surveillance of brain malignancies(vol 4, vdac161, 2022)

Neuro-Oncology Advances(2023)

引用 0|浏览17
暂无评分
摘要
Abstract Background Diagnosis and prognostication of intra-axial brain tumors hinges on invasive brain sampling, which carries risk of morbidity. Minimally invasive sampling of proximal fluids, also known as liquid biopsy, can mitigate this risk. Our objective was to identify diagnostic and prognostic cerebrospinal fluid (CSF) proteomic signatures in glioblastoma (GBM), brain metastases (BM), and primary central nervous system lymphoma (CNSL). Methods CSF samples were retrospectively retrieved from the Penn State Neuroscience Biorepository and profiled using shotgun proteomics. Proteomic signatures were identified using machine learning classifiers and survival analyses. Results Using 30 µL CSF volumes, we recovered 755 unique proteins across 73 samples. Proteomic-based classifiers identified malignancy with area under the receiver operating characteristic (AUROC) of 0.94 and distinguished between tumor entities with AUROC ≥0.95. More clinically relevant triplex classifiers, comprised of just 3 proteins, distinguished between tumor entities with AUROC of 0.75-0.89. Novel biomarkers were identified, including GAP43, TFF3 and CACNA2D2, and characterized using single-cell RNA sequencing. Survival analyses validated previously implicated prognostic signatures, including blood brain barrier disruption. Conclusions Reliable classification of intra-axial malignancies using low CSF volumes is feasible, allowing for longitudinal tumor surveillance.
更多
查看译文
关键词
biomarkers,brain metastasis,cerebrospinal fluid,disease surveillance,glioblastoma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要