Cavitation-Mediated Fracture Energy Dissipation in Polylactide at Rubbery Soybean Oil-Based Block Copolymer Interfaces Formed via Reactive Extrusion

ACS Applied Materials & Interfaces(2022)

引用 1|浏览5
暂无评分
摘要
Here, we spearhead a new approach to biopolymer impact modification that demonstrates superior performance while maintaining greater than 99% compostability. Using soybean-based monomers, a virtually untapped resource in terms of commercial volume and overall cost, a series of hyperbranched block copolymers were synthesized and melt-processed with poly(L- lactide) (PLA) to yield impact resistant all-polymer composites. Although PLA impact modification has been treated extensively, to date, the only practical solutions have relied on non-compostable petroleum-based rubbers. This study illustrates the activity of energy dissipation mechanisms such as cavitation, classically relegated to well-entangled petroleum-based rubbers, in poorly entangled hyperbranched soybean-based rubbers. Furthermore, we present a complete study of the mechanical performance and morphology of these impact modified PLA composites. The significance of combining deformation theory with a scalable green alternative to petroleum-based rubbers opens up a potential avenue for cheap compostable engineering thermoplastics.
更多
查看译文
关键词
biopolymers,soybean oil,poly(L-lactide),toughening,extrusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要