Analysis of air conditioning system impact on a fuel cell vehicle performance based on a realistic model under actual urban conditions

International Journal of Hydrogen Energy(2022)

引用 5|浏览1
暂无评分
摘要
In this study, a practical fuel cell vehicle considering the Heating, Ventilation, and Air conditioning system is considered to analyze hydrogen consumption under different working conditions. As a prevalent hydrogen-fueled vehicle, Toyota Mirai has been meticulously modeled in Simecenter Amesim software. The simulated model covers all of the vehicle's components with a concentration on Heating, Ventilation, and Air conditioning system. Since the air temperature and ‘weather conditions can significantly impact the vehicle's overall performance, various environmental conditions, including temperature variations, humidity, and varied solar fluxes, are taken into account. Furthermore, New York City is chosen as a densely populated megacity to simulate the dynamic behavior of the fuel cell vehicle under actual driving circumstances. The results illustrate that the Heating, Ventilation, and Air conditioning system can notably alter hydrogen consumption under real driving conditions. In this regard, turning on the Heating, Ventilation, and Air Conditioning system results in a 19% increase in fuel consumption. Moreover, the degradation phenomenon, which is a typical result of using fuel cell vehicles under urban driving conditions, impacts the vehicle's mileage and hydrogen consumption. The simulation results indicate that a fresh fuel cell stack consumes 80 g of hydrogen, while for 2500 and 5500 working hours fuel cells, the stack consumes 89.6 and 107 g of hydrogen, respectively. Based on the obtained results, a 33.75% increase in fuel consumption occurs by implementing a degraded fuel cell stack under real driving conditions.
更多
查看译文
关键词
Fuel cell vehicle,Real driving cycle,HVAC system,Degradation phenomenon,Dynamic simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要