Linking Hydro-Physical Variables and Landscape Metrics using Advanced Data Mining for Stream-Flow Prediction

Water Resources Management(2022)

引用 4|浏览1
暂无评分
摘要
In Streamflow prediction the most important triggering/controlling variables are related to climate, physiography, and landscape patterns. This study investigated the effect of different landscape metrics to relate spatial patterns to surface runoff processes and predict monthly streamflow using climatic and physiographic variables for the 42 sub-basins of the Urmia Lake Basin in Iran. We developed an innovative data-driven framework and considered two different modelling approaches i.e., modelling in homogenous clusters (local approach) and modelling in the entire area as an entity (global approach). The results of basin LULC monitoring from the 20-year experimental period display drastic changes in the land use of the basin such as reduction in lake area (48.3%) due to increasing irrigated areas (22.5%), increasing residential areas (14.2%), and decrease in rangeland (6.0%). Streamflow prediction results in the global experiment showed Group Method of Data Handling (GMDH) and Random Forest (RF) with NSE of 0.76 and NRMSE of 6.44% have similar results and outperformed Partial Least Squares regression (PLS), but in clustering experiment GMDH with NSE of 0.88 and NRMSE of 5% shows the highest accuracy and outperformed both RF and PLS. The results confirmed that modelling in homogenous clusters (local prediction) significantly enhanced the performance of prediction.
更多
查看译文
关键词
Ecological landscape metrics,Machine learning,Runoff prediction,Urmia Lake
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要