Modeling of Relative Humidity-Dependent Impedance of Polymer Electrolyte Membrane Fuel Cells

ECS Transactions(2022)

引用 0|浏览1
暂无评分
摘要
Equivalent circuit modeling is a powerful technique for analyzing the complex impedance of polymer electrolyte membrane fuel cells. The transmission line model, which is based on reactant transport and electrochemical reactions, is frequently applied to porous electrodes. In this study, the distribution of the local charge transfer resistance was considered to accurately evaluate the dependence of the impedance on relative humidity (R.H.). The impedance of the prepared single cell was measured at 0.7 V under various R.H. conditions. The fitting results to the measured impedance spectra confirmed that a strong positive correlation exists between R.H. and proton conductivity. The exchange current density was determined in advance to simulate the impedance with dependence on R.H. The proposed model can simulate the experimental trend in which the total resistances of proton conduction and charge transfer decreased inversely to R.H.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要