Electromechanical Coupling in Electroactive Polymers a Visual Analysis of a Third-Order Tensor Field

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS(2023)

引用 0|浏览15
暂无评分
摘要
Electroactive polymers are frequently used in engineering applications due to their ability to change their shape and properties under the influence of an electric field. This process also works vice versa, such that mechanical deformation of the material induces an electric field in the EAP device. This specific behavior makes such materials highly attractive for the construction of actuators and sensors in various application areas. The electromechanical behaviour of electroactive polymers can be described by a third-order coupling tensor, which represents the sensitivity of mechanical stresses concerning the electric field, i.e., it establishes a relation between a second-order and a first-order tensor field. Due to this coupling tensor's complexity and the lack of meaningful visualization methods for third-order tensors in general, an interpretation of the tensor is rather difficult. Thus, the central engineering research question that this contribution deals with is a deeper understanding of electromechanical coupling by analyzing the third-order coupling tensor with the help of specific visualization methods. Starting with a deviatoric decomposition of the tensor, the multipoles of each deviator are visualized, which allows a first insight into this highly complex third-order tensor. In the present contribution, four examples, including electromechanical coupling, are simulated within a finite element framework and subsequently analyzed using the tensor visualization method.
更多
查看译文
关键词
Tensors,Couplings,Visualization,Strain,Behavioral sciences,Shape,Plastics,Tensor visualization,third-order tensor,deviatoric decomposition,electro-active polymer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要