Biodegradable poly(butylene succinate‐co‐butylene furandicarboxylate): Effect of butylene furandicarboxylate unit on thermal, mechanical, and ultraviolet shielding properties, and biodegradability

Journal of Applied Polymer Science(2022)

引用 5|浏览1
暂无评分
摘要
Biobased co-polyesters poly(butylene succinate-co-butylene furandicarboxylate) (PBSF) is prepared by transesterification and polycondensation of dimethyl succinate (DSMu), dimethyl 2,5-furandicarboxylate (MDFD) and 1,4-butanediol (1,4-BDO). GPC analysis shows that PBSF has high molecular weight with weight average molecular weight (M-w) up to 11 x 10(4) g/mol. Due to the low -COOH content, PBSF also has excellent thermal stability, which is beneficial to the polyester processing. Differential scanning calorimetry (DSC) analysis shows that PBSF are semi-crystalline materials, with T-m ranging from 116 to 101 degrees C. Tensile tests showed that theses polymers possess high tensile strength (30-22 MPa) and elongation at break as high as 562%, which is prominently higher than that of commercial poly(butylene succinate) (PBS) and most biodegradable packaging materials. It should be noted that the increase of BF units improves the UV shielding properties of polyester materials. Moreover, the incorporation of furan ring promoted the enzymatic degradation of PBS, and PBSF showed a significantly faster biodegradation rate when the BF unit content is 5%. PBSF polyester has excellent thermal properties, tensile properties, UV shielding properties and biodegradable properties. Therefore, these new bio-based polymers have great potential to be applied as environmentally friendly and sustainable plastic packaging.
更多
查看译文
关键词
biodegradable, copolymers, degradation, packaging, thermal properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要