Dual-template molecularly imprinted electrochemical biosensor for IgG-IgM combined assay based on a dual-signal strategy.

Bioelectrochemistry (Amsterdam, Netherlands)(2022)

引用 8|浏览2
暂无评分
摘要
Detection of immunoglobulins (Igs) is of clinical significance for early diagnosis and timely treatment of diseases. Herein, a dual-template molecularly imprinted (DTMI) electrochemical biosensor was developed for IgG-IgM combined assay. In this DTMI electrochemical biosensor, Prussian blue (PB) and thionine (TH) decorated on graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs), respectively, were utilized as the dual-signal probes, and Au nanoparticles (AuNPs) were used for Igs anchoring and signal amplification. Polypyrrole (PPy) was electrodeposited on the biosensor surface and acted as the molecularly imprinted polymers (MIPs). After the removal of the IgG and IgM templates, the resultant DTMI electrochemical biosensor was used for IgG-IgM combined assay, and the concentrations of IgG and IgM could be indicated by the changes in the peak currents of PB (ΔIPB) and TH (ΔITH), respectively. The DTMI electrochemical biosensor displayed a wide linear range and a low limit of detection (LOD) for both IgG (28.80 pg mL-1) and IgM (0.58 pg mL-1). Finally, the developed DTMI biosensor was used for IgG-IgM combined assay in clinical serum samples, and the results were comparable to those obtained by conventional immunoturbidimetry, implying its great potential in clinical diagnosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要