BAG3 Attenuates Ischemia-Induced Skeletal Muscle Necroptosis in Diabetic Experimental Peripheral Artery Disease

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 5|浏览4
暂无评分
摘要
Peripheral artery disease (PAD) is characterized by impaired blood flow to the lower extremities, resulting in ischemic limb injuries. Individuals with diabetes and PAD typically have more severe ischemic limb injuries and limb amputations, but the mechanisms involved are poorly understood. Previously, we identified BAG3 as a gene within a mouse genetic locus termed limb salvage QTL1 on mouse chromosome 7 that determined the extent of limb necrosis following ischemic injury in C57B1/6 mice. Whether BAG3 deficiency plays a role in the severe ischemic injury observed in diabetic PAD is not known. In vitro, we found simulated ischemia enhanced BAG3 expression in primary human skeletal muscle cells, whereas BAG3 knockdown increased necroptosis markers and decreased cell viability. In vivo, ischemic skeletal muscles from hind limbs of high-fat diet (HFD)-fed mice showed poor BAG3 expression compared to normal chow diet (NCD)-fed mice, and this was associated with increased limb amputations. BAG3 overexpression in ischemic skeletal muscles from hind limbs of HFD mice rescued limb amputation and improved autophagy, necroptosis, skeletal muscle function and regeneration. Therefore, BAG3 deficiency in ischemic skeletal muscles contributes to the severity of ischemic limb injury in diabetic PAD, likely through autophagy and necroptosis pathways.
更多
查看译文
关键词
BAG3, peripheral artery disease, diabetes, autophagy, necroptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要