Simulation and Techno-Economical Evaluation of a Microalgal Biofertilizer Production Process

BIOLOGY-BASEL(2022)

引用 4|浏览2
暂无评分
摘要
Simple Summary The world's population is expected to increase to almost 10,000 million by 2025, thus requiring an increase in agricultural production to meet the demand for food. Hence, an increase in fertilizer production will be needed, but with more environmentally sustainable fertilizers than those currently used. Traditional nitrogenous fertilizers (TNFs, inorganic compounds, for example nitrates and ammonium) are currently the most consumed. Biofertilizers concentrated in amino acids (BCAs) are a more sustainable alternative to TNF and could reduce the demand for TNFs. BCAs are widely used in intensive agriculture as growth and fruit formation enhancers, as well as in situations of stress for the plant, helping it to recover its vigor. In addition, BCAs minimize or contribute to reducing the damage caused by pests and diseases, have an immediate action, giving a full utilization and, lastly and most importantly, they produce savings in the crop. The objective of this work is to propose a process for the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant and to carry out techno-economic evaluation in such a way as to determine the viability of the proposal. Due to population growth in the coming years, an increase in agricultural production will soon be mandatory, thus requiring fertilizers that are more environmentally sustainable than the currently most-consumed fertilizers since these are important contributors to climate change and water pollution. The objective of this work is the techno-economic evaluation of the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant, to determine its economic viability. A process proposal has been made in six stages that have been modelled and simulated with the ASPEN Plus simulator. A profitability analysis has been carried out using a Box-Behnken-type response surface statistical design with three factors-the cost of the biomass sludge, the cost of the enzymes, and the sale price of the biofertilizer. It was found that the most influential factor in profitability is the sale price of the biofertilizer. According to a proposed representative base case, in which the cost of the biomass sludge is set to 0.5 EUR/kg, the cost of the enzymes to 20.0 EUR/kg, and the sale price of the biofertilizer to 3.5 EUR/kg, which are reasonable costs, it is concluded that the production of the biofertilizer would be economically viable.
更多
查看译文
关键词
microalgae, biofertilizer, amino acids, wastewater, simulation, circular bioeconomy, techno-economical evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要