Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils

Environmental Pollution(2022)

引用 2|浏览3
暂无评分
摘要
Arsenic (As) is a toxic metalloid that is ubiquitous in paddy soils, where passivation is the most widely used method for remediating As contamination. Recently, anaerobic methane oxidation coupled with arsenate (As(V)) reduction (AOM-AsR) has been shown to act as a critical driver for As release in paddy fields. However, the effect and mechanism of the passivators on the AOM-AsR process remain unclear. In this study, we incubated arsenate-contaminated paddy soils under anaerobic conditions. Using isotopically labelled methane and different passivators, we found that an iron-based passivator containing calcium sulfate and iron oxide (9:1, m/m) named IBP showed a much better performance than the other passivators. Adding IBP decreased the arsenite (As(III)) concentration in the soil solution by 78% and increased the AOM rate by 55%. Furthermore, we employed high-throughput sequencing and real-time quantitative polymerase chain reaction (qPCR) to investigate the ability of IBP to control As release mediated by AOM-AsR in paddy fields, as well as its underlying mechanism. Our results showed that IBP addition significantly increased anaerobic methanotrophic (ANME) archaea (ANME-2a-c, ANME-2d, and ANME-3) by 91%, and increased the methane-oxidizing bacterium Methylobacter by 262%. Similarly, IBP addition significantly increased the Fe(III) concentration in soil solution by 39% and increased the absolute abundance of Fe(III)-reducing bacteria (Geobacteraceae) by 21 times in soil. Adding IBP may significantly promote AOM coupled with Fe(III) reduction, significantly reducing electron transfer from AOM to As(V) reduction. Hence, IBP may be used as an efficient passivator to remediate As-contaminated soil using an active AOM-AsR process. These results provide a novel insight into controlling soil As release by regulating an active and critical As mobilization pathway in the environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要